IMPLEMENTATION AND DEPLOYMENT OF POST-QUANTUM CRYPTOGRAPHY

Автор: Gabriel Chênevert
Организация: Universite´ Catholique de Lille

Категория:

Ключевые слова: post-quantum cryptography, module learning with errors, number-theoretic Fourier trans- form, ML-KEM, ML-DSA
Аннотация. This short expository note aims to share some of the insight gained by implementing ”from scratch”, in C++, the ML-KEM and ML-DSA quantum resistant cryptographic primitives. Proper under- standing of the inner workings of these recently standardized algorithms allows one to produce test vectors to verify compliance of any new implementation, as well as provide small (unsafe) parameter values that can be used for pedagogical purposes.

Библиография:

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. ”(Leveled) Fully Homomorphic Encryption without Bootstrapping.” ITCS, ACM (2012): 309–325.
National Institute of Standards and Technology. Module-Lattice-Based Key Encapsulation Mecha- nism Standard, (Department of Commerce, Washington, D.C.), Federal Information Processing Stan- dards Publication (FIPS) NIST FIPS 203 (2024). https://doi.org/10.6028/NIST.FIPS.203.
National Institute of Standards and Technology. Module-Lattice-Based Digital Signature Standard, (Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publica- tion (FIPS) NIST FIPS 204 (2024). https://doi.org/10.6028/NIST.FIPS.204.
National Institute of Standards and Technology. Stateless Hash-Based Digital Signature Standard, (Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publica- tion (FIPS) NIST FIPS 205 (2024). https: //doi.org/10.6028/NIST.FIPS.205
O. Regev. ”On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.” STOC, ACM (2005): 84–93
F. Valsorda. ”Enough Polynomials and Linear Algebra to Implement Kyber.” Cryptography Dis- patches (2023). https://words.filippo.io/dispatches/kyber-math/