ML-BASED PREDICTING PRNG OUTPUT WITH SEQUENTIAL ANALYSIS

Автор: Dmytro Proskurin, Maksim Iavich, Sergiy Gnatyuk, Tetiana Okhrimenko
Организация: State University “Kyiv Aviation Institute”, Caucasus University

Категория:

Ключевые слова: Random numbers, Neural Networks, AI, Hybrid model, PRNG, cybersecurity, critical information infrastructure
Аннотация. This research goes into the predictive capabilities of neural network models, mainly focusing on recurrent neural networks (RNNs) and long-term short-term memory networks (LSTMs), and their combination in a hybrid architecture to predict the outcomes of various pseudo-random number generators (PRNGs). In this work Continuous-Output Scenario Analysis is shown.

Библиография:

Islam, M., Chen, G., & Jin, S. (2019). An Overview of Neural Network. American Journal of Neural Networks and Applications, 5(1), 7-11. doi:10.11648/j.ajnna.20190501.12
O'Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks.
Li, Z., Yang, W., Peng, S., & Liu, F. (2021). A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.
Lin, T., Guo, T., & Aberer, K. Hybrid Neural Networks for Learning the Trend in Time Series.
Psichogios, D. C., & Ungar, L. H. A Hybrid Neural Network-First Principles Approach to Process Modeling.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information Processing Systems, 30.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. Advances in Neural Information Processing Systems, 27.
Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks. Andrej Karpathy blog.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10), 2451-2471.
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078.
Brownlee, J. (2018). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
Maksim Iavich, Tamari Kuchukhidze, Giorgi Iashvili, Sergiy Gnatyuk Hybrid quantum random number generator for cryptographic algorithms. RADIOELECTRONIC AND COMPUTER SYSTEMS, 4, 2021. DOI: https://doi.org/10.32620/reks.2021.4.09
Maksim Iavich, Tamari Kuchukhidze, Giorgi Iashvili, Sergiy Gnatyuk, Razvan Bocu," Novel Quantum Random Number Generator with the Improved Certification Method ", International Journal of Mathematical Sciences and Computing(IJMSC), Vol.7, No.3, pp. 41-53, 2021. DOI: 10.5815/ijmsc.2021.03.05
Maksim Iavich, Tamari Kuchukhidze, Giorgi Iashvili, Sergiy Gnatyuk, Razvan Bocu," Novel Quantum Random Number Generator with the Improved Certification Method ", International Journal of Mathematical Sciences and Computing (IJMSC), Vol.7, No.3, pp. 41-53, 2021. DOI: 10.5815/ijmsc.2021.03.05