
Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

65

HIGH-SPEED AND SECURE HASH FUNCTION FOR BLOCKCHAIN
SECURITY MECHANISMS

Anatoliy Hrytsak1, Vasyl Kinzeryavyy2, Dmytro Prysiazhnyi1, Yuliia Burmak3, Yevhen Samoylik2
1Vinnytsia National Technical University, Vinnytsia, Ukraine

2National Aviation University, Kyiv, Ukraine
2Kyiv College of Communication, Kyiv, Ukraine

ABSTRACT: Information communication technologies development and the emergence of new
attack types leads to increasing the amount of existing hash functions vulnerabilities and other
disadvantages. In every blockchain security mechanisms each block contains a cryptographic hash of
the previous block, a timestamp, and transaction data. New hash function development is very actual
and value research task. Thus, in this paper a new hash function was proposed, which was based on
well-known hash function. Improvements involved a number of changes: increased the size of words
and an increase in the message digest; at the pre-processing stage, the incoming message is
supplemented by a pseudo-random sequence; the numbers of nonlinear functions are increased. The
proposed changes allow reducing the number of rounds in the compression function, which will
guarantee at least similar security indicators with simultaneous increase in data processing speed.

KEYWORDS: Information Communication Technologies, Cybersecurity, Blockchain Security,
High-Speed, Hash Function, Data Processing, Confidentiality and Integrity.

I. Introduction

Every year the level of information security is increasing in organizations of different forms
ownership. First of all, this is due to an increase in the flow of information that is provided in real
time with the help of Internet resources. Through the web-portals of the organization highlight results
of its activities, provide online services and financial services, conduct financial transactions and etc.
The lion's share of the information circulating in the above-mentioned processes needs to be
adequately protected. According to this, another important task is to ensure the proper protection of
information during the exchanging data at the expense of Internet resources. One of the most common
methods of such protection is the using of cryptographic certificates – digital certificates that ensure
the confidential exchange of data between the client and using public key encryption. However, the
certificate is not only an open key with information, but also a digital signature of a server or a web
portal that is implemented using hash function. But, the number of cyberattacks, especially on web
portals, has increased in geometric loopholes: blocking access, stealing confidential data, monitoring
traffic, etc. At the intelligence stage, hackers monitor the network to identify weaknesses, where you
can get the access to users working machines and ultimately penetrate into the network. Improvement
of efficiency of digital certificates, as one of the most common methods of protecting information in
the process of exchange and connection, is relevant and needs improvement. Such cyberattacks as
DROWN (a vulnerability that allows decrypting ciphertext without a private key) [1], FREAK
(vulnerability that allows you to penetrate into the installed encrypted connection and analyze a
traffic) [2], LOGJAM (vulnerability that allows reading and modification of data transmitted over a
secure communications channel [3]) caused large losses to many web resource owners, including such
giants as Google, Mozilla, Yahoo, etc. and put under the question reliability of digital certificates.
Besides, in every blockchain security mechanisms each block contains a cryptographic hash of the
previous block, a timestamp, and transaction data. Therefore, increasing the reliability of digital
certificates, as the most common methods for protecting the exchange of data through communication
channels, is relevant and needs to be improved. The purpose of this work is high-speed and secure
hash function development for using the information security systems and blockchain technologies.

Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

66

2. Related papers

One of the most common cryptographic algorithms is hash function. They are necessary for
“compressing” information into message digest that represent a bit combinations of fixed length. Hash
functions of SHA-2 are very popular in applications related to the systematization, search and protection of
information. Digital protocols use public key encryption to authenticate the client and server. At the
confirmation stage, the hash function plays the role of the identification mark and is used to ensure the
integrity of the data during transmission. That is, the hash function has to make it impossible to fake the
certificate, while leaving the same signature of the verification center. Till recently, the SHA-1 hash
function was used in digital certificates. In connection with the detection of numerous collisions in SHA-1
[4,5] and in the most digital certificates [5-7], Microsoft, Google and others initiated a decision to replace
the hash function [8]. Starting in 2016 the SHA-2 hash function is used in the SSL certificate. However,
technologies continue to improve, the power of technology is increasing, and today many works are
devoted to the investigation of cryptographic strength of SHA-2, in particular, the following shortcomings
were identified in works [9-10]: сollisions for truncated variants SHA-512; finding the first and second
prototypes; а birthday attack. The paper proposes a new method for constructing a hash function; it is the
prototype of SHA-512. In our opinion, this hash function can allow to improve the efficiency of
cryptographic protection of digital certificates when it is applied.

3. High-speed and secure hash function development

Pre-processing step. At the pre-processing step, an incoming message M (M V
N

 ,

 0,1 NV
N
 , N is message length M in bits, N Z , 1282N ) are complemented by additional

sequence lD (message length M) and pseudorandom sequence salt (is determined on the basis of
M), so that the resulting message length is a multiple of the length data blocks L (1024L t   bits,
t N):

 , ,
rez

M M D saltl (1)

where rez NN
M V , 128

NN salt
V N N   ,  l DlD H M , 128lD V ,  Gensalt H M , Nsaltsalt V ,

  2 128 modsaltN L N L   , as a function GenH could be any function of generating a pseudorandom

sequence which is based on M , DlH is function of length M . Based on the completed message rezM
will determine the hash value of the message M .
Message rezM , rez NNM V , broken into k L - bit blocks:  1 2,rez kM m m m where

   , 1, , /i Lm V i k k NN L   .

Determination step of a hash. The digest of the message is iteratively calculated, processing each

one im block messages rezM ,  , 1,i Lm V i k  compression function gF (2), to get the resulting hash

(3):

 1,i g i ih F h m ,  1,i k (2)

 , rez kH IV M h (3)

where 0h IV , IV is initialization vector, / 2LIV V , ih is intermediate values of the messages digest

 / 2 , 1,i Lh V i k  ; H is resulting hash, / 2LH V ; gF is the compression function uses in the hash

function.
The compression function gF is performed in three stages: splitting blocks into words (1),

initialization of variables (2), compression (3).

Step 1. Each im data block rezM ,  , 1,i Lm V i k  , decomposes into 16 words (4):

 0 15,...,i i
im W W (4)

where /16
i
j LW V , 0,15j  .

Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

67

On the basis of words which are received i
jW , 0,15j  , words are calculated i

uW (5) /16
i

u LW V ,

16,63u  :

16 15 7 20() 1()u u u u uW W Delta W W Delta W       , (5)

where    0() ,1 ,8 7(),u u u uDelta W Rotr W Rotr W SHR W   ,

   1() ,19 (),61 ,6u u u uDelta W Rotr W Rotr W SHR W   ,  ,Rotr x l is right bitwise cyclic shift of argument

x for l − bits;  ,SHR x l is left shift argument x for l − bits.

Step 2. Re-initialization of internal state vectors is performed T (6),  1 8,...,T T T , /16z LT V ,

1,8z  :

1
z

z iT h  (6)

where  1 8
1 1 1,...,i i ih h h   , 1ih  is the previous value of the digest, which is fed to the input of the

function gF , 16/1 L
z
i Vh  , 1,8z  .

Step 3. At this step, there is a direct compression of the data block i Lm V , 1,i k , LNNk / ,

the value of the vectors of the internal state will change each 64 rounds  1 8,...,T T T , /16z LT V ,

1,8z  , through their mixing with vectors
jW and constants

jK 0,63j  .

For each j round, the mathematical actions given in the formulas will be executed (7) - (11), 0,63j  :

   
1 8 5 5 6 71 , ,g j jF T Sigma T Ch T T T W K     (7)

   
2 1 1 2 30 , ,gF Sigma T Maj T T T  (8)

   3 3 6 2 3, ,gF JQ T T Maj T T  (9)

    
4 8 7 8,gF SH T T Sigma T  (10)

48 7 gT T F  ; 7 6T T ; 6 5T T ;
15 4 gT T F  ; 4 3T T ;

33 2 gT T F  ; 2 1T T ;
1 21 g gT F F  (11)

where zT are vectors of the internal state, /16z LT V , 1,8z  ; jW are words which are broken from

im block; jK are predetermined constants (if necessary, may change), 16/Lj VK  ;

 , ,Ch x y z ,  , ,Maj x y z ,  0Sigma x ,  1Sigma x ,  0Delta x ,  1Delta x ,  ,JQ x y and  ,SH x y are

nonlinear functions that are described in (12) - (19):

       0 , 28 ,34 ,39Sigma x Rotr x Rotr x Rotr x   (12)

       1 ,14 ,18 ,41Sigma x Rotr x Rotr x Rotr x   (13)

   , , ()Ch x y z x y x z    (14)

       , ,Maj x y z x y x z y z      (15)

       0 ,1 ,8 ,7Delta x Rotr x Rotr x SHR x   (16)

       1 ,19 ,61 ,6Delta x Rotr x Rotr x SHR x   (17)

       , ,13 ,17JQ x y x y Rotr x SHR y    (18)

       , ,7 ,8 ,SH x y SHR x Rotr y Rotr x y   (19)

Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

68

where gF
 is intermediate compression function value, 16/Lg VF

o
 , 4,1o ,  , ,Ch x y z ,  , ,Maj x y z ,

 0Sigma x ,  1Sigma x ,  0Delta x ,  1Delta x , nonlinear functions that were used in the original SHA-

2.  ,JQ x y and  ,SH x y are new nonlinear functions that were proposed in this hash function.

After completing the last round, the values of the vectors of the internal state  1 8,...,T T T ,

/16z LT V , 1,8z  , completely changed as follows:

1
zT T h

z z i
   , (20)

where 1ih  is the previous value of the digest, which is fed to the input of the function gF

 1 8
1 1 1,...,i i ih h h   , 16/1 L

z
i Vh  , 1,8z  . The output of the function will be given to the final values of

the internal state vectors.
In our opinion, the method for constructing a hash function is developed by adding a

pseudorandom sequence salt to an incoming message at the pre-processing and non-linear operations
 ,JQ x y and  ,SH x y at the step of determining the hash values. It is possible to reduce the total

number of rounds in the compression function with similar or better performance and security
indicators data in the aspect of resistance to various attacks and neutralization of known
vulnerabilities compared with the SHA-2. Theoretical and experimental researches will be conducted
for verification of this statement and cryptanalysis performing in the further works.

4. Experiments and discussion

For the experimental study on the basis of the proposed method, three hash functions with such
parameters were constructed: 1t , 10241024  tL , 5122/ VLVH  for 1BK ; 2t , 20481024  tL ,

10242/ VLVH  for 2BK ; 3t , 30721024  tL , 15362/ VLVH  for 3BK . As a function GenH for

iBK , 3,1i cryptographic algorithm SNOW 2.0 was selected. The software implementation of
proposed hash functions was carried out as console tool using the programming language C++.
Development environment was Microsoft Visual Studio 2013 (Release Version).

Therefore, to study the statistical characteristics of hash functions, these were investigated in
the statistical test NIST STS [11]. Also proposed hash functions were compared with the results of the
benchmark generator of pseudo-random sequences BBS and some block symmetric ciphers (Kalyna,
Luna, Neptun), which worked in counter mode. Note that for this research, based on the developed
hash functions and the SHA-512 function, stream ciphers were constructed to generate required length
files for NIST STS statistical tests.

In Fig. 1 the statistical portrait of the passage of statistical tests is given for 1BK (similar

portraits can be built for 2BK and 3BK), and in Table 1 the results of the study was showed. It
showed that the proposed functions of healing passed a comprehensive control in accordance to NIST
STS.

Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

69

Fig. 1. The statistical portrait of the stream cipher on the basis of 1BK

Table 1. Sequence testing results

Generator
The number of tests in which the

testing was completed
99%

sequence
96% sequence

BBS 133
(70,70%)

188 (100%)
Kalyna 136

(72,30%)
188 (100%)

Luna 141
(75,00%)

188 (100%)
Neptun 140

(74,46%)
188 (100%)

SHA-512 137
(72,87%)

188 (100%)
BK1 141

(75,00%)
188 (100%)

BK2 140
(74,46%)

188 (100%)
BK3 142

(75,53%)
188 (100%)

Also, the study of the rate characteristics for developed hash functions iBK , 3,1i was carried

out. To do this randomly selected several files of different sizes and for each file was scanned hash
code, while measuring the time hash code, see Table 2.

All experiments were performed using the system with following characteristics: Intel (R) Core
(TM) i3-6100 processor, 3.7 GHz processor, and a 4 GB RAM based on the 64-bit Windows 7
Service Pack 1.

Table. 2 Results of the study for the speed characteristics of the hash functions

Hash
function

File 1, 1 MB File 2, 10 MB File 2, 100 MB

t , s v , MB
/s

t , s v , MB
/s

t , s v , MB
/s

SHA-512 0.015 68,26 0,145 70,62 1,38 74,20
BK1 0,012 85,33 0,101 101,38 0,926 110,58
BK2 0,011 93,09 0,098 104,48 0,902 113, 52
BK3 0,011 93,09 0,094 108,93 0,879 116,49

According to the obtained results of the developed hash functions’ speed characteristics

BKi , 3,1i , are better than well-known and widely used SHA-512 hash function.

5. Conclusions

The paper proposes a new method for secure hash function constructing, which can be used to
improve the effectiveness of cryptographic protection of digital certificates in the future. It will
provide a more reliable exchange of confidential information on the network. The method requires
further research to test the performance on different platforms, the resistance to common methods of
cryptanalysis. In the following works, it is planned to conduct the above-mentioned studies and
compare them with the parameters of the hash functions of the SHA-2 series.

REFERENCES

1. N. Aviram, S. Schinzel, J. Somorovsky, “DROWN: Breaking TLS using SSLv2,
Proceedings of the 25th USENIX Security Symposium”, pp.18, 2016. [Online]. Available:
https://drownattack.com/drown-attack-paper.pdf

2. M. Green, “Attack of the week: FREAK (or ‘factoring the NSA for fun and profit’)”
[Online]. Available: https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-
factoring-nsa/ | Date accesses: april 2018|.

3. B. Duncan, “Weak Diffie-Hellman and the Logjam Attack”, [Online]. Available:
(https://weakdh.org/ | Date accesses: april 2018|.

Scientific and Practical Cyber Security Journal (SPCSJ) 4(1): 65 – 70 ISSN 2587-4667 Scientific
Cyber Security Association (SCSA)

70

4. P. Karpman, T. Peyrin, M. Stevens, “Practical Free-Start Collision Attacks on 76-step SHA-
1”, [Online]. Available: https://eprint.iacr.org/2015/530

5. S. Sanadhya, P. Sarkar, “22-Step Collisions for SHA-2” [Online]. Available:
http://arxiv.org/abs/0803.1220

6. F. Kohlar, S. Schage, “On the Security of TLS-DH and TLS-RSA in the Standard Model1”,
pp.50, 2013 [Online]. Available: http://eprint.iacr.org/2013/367.pdf

7. C. Meyer, J. Schwenk, “Chair for Network and Data Security Ruhr-University Bochum.
Lessons Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses”,
pp.15 [Online]. Available: http://eprint.iacr.org/2013/049.pdf

8. C. Castelluccia, E. Mykletun, “Improving Secure Server Performance by Re-balancing
SSL/TLS Handshakes”. pp.11 (Published in “Proceeding ASIACCS '06 Proceedings of the 2006
ACM Symposium on Information, computer and communications security. pp 26-34”).

9. F. Mendel “Improving Local Collisions: New Attacks on Reduced SHA-256”, p.17
[Online]. Available: https://eprint.iacr.org/2015/350.pdf

10. C.Dobraunig, M. Eichlseder, “Analysis of SHA-512/224 and SHA-512/256”, p.30 [Online].
Available: https://eprint.iacr.org/2016/374.pdf

11. NIST Special Publication 800-22 “A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications” [Online].
Available:https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

