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ABSTRACT. Sensitive data processed, stored, and transmitted on a computer requires a mechanism to 

protect it from unauthorized access. Several techniques have been proposed, including Intrusion 

Detection Systems (IDS), to protect computer networks from attacks. Autoencoders, a deep learning 

technique, have been explored by several researchers aiming to improve the performance of existing 

IDS. Despite the significant improvements seen with the use of autoencoders, the issues of low detection 

accuracy and high false alarm rates continue to be major problem. The architecture of a deep 

autoencoder, including the number of layers, neurons, and the bottleneck, affects its performance. This 

study is conducted to determine the optimal bottleneck size based on the architecture of a two-layer 

autoencoder. The study utilizes the benchmark dataset NSL-KDD to train, test, and validate the model. 

The experimental results from our proposed system reveal that the optimal bottleneck size for an 

autoencoder is obtained by setting it to 60% of the size of the previous hidden layer. 
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INTRODUCTION 

The benefits of computer networks have attracted various organizations, including healthcare, banks, 

educational institutions, security services, industry, transportation, hospitality, and individuals, to store 

sensitive information online. However, the increasing rate and sophistication of attacks on these 

networks pose a significant danger. Cybersecurity experts and academia have made considerable efforts 

to enhance cybersecurity. Although progress has been made, addressing the rising threat levels requires 

further attention. One extensively researched security technique is Intrusion Detection Systems (IDS). 

IDS, by their nature, facilitate early detection, enabling prompt actions to mitigate attack severity. 

According (Xu et al. 2021), IDS's ultimate goal is to classify network traffic as normal or malicious. 

These systems are built using machine learning and deep learning techniques and can be categorized as 

anomaly-based or signature-based IDS. 

Signature-based IDS maintains a database of known attacks, comparing incoming network traffic 

against this database. Anomaly-based IDS, conversely, establishes a normal profile and flags incoming 

traffic deviating from this profile as an attack. Both approaches have strengths and weaknesses. For 

instance, anomaly-based systems are prone to high false alarms but can detect novel attacks. Signature-

based IDS struggle to identify new attacks and require frequent database updates, making them 

computationally expensive, but they have lower false alarm rates. 

Another classification criterion for IDS is their implementation location. Network Intrusion Detection 

Systems operate at the network level, monitoring data packets and classifying them as normal or 

malicious. Host-based IDS involves installing software on individual systems for tracking purposes. 

While various researchers have achieved substantial success with IDS techniques, the accuracy of 

intrusion detection remains a significant research challenge. (Alam and Ahmed 2023; Logeswari, Bose, 

and Anitha 2023; Kasongo 2023; Shukla and Kumar 2023; Ramasamy and Eric 2023; Pranto et al. 
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2022; Makarand 2022; Hendi, Verawati, and Hardi 2022; Das 2022; Li et al. 2022; Garg, Kumar, and 

Shyamasundar n.d.) have employed machine learning algorithms for IDS implementation, reporting 

impressive results. However, machine learning has limitations, as confirmed by (Shone et al. 2018), 

who emphasized the need for human expert interaction. To address this limitation, researchers are 

turning to deep learning techniques, such as Autoencoders, which have shown promise in IDS research. 

Several researchers (Schmidt 2020; Y. Song, Hyun, and Cheong 2021; Haripriya and Jagadeesh 2022; 

Sabir, Ahmad, and Alghazzawi 2023; Almaiah et al. 2022; Shahid et al. 2019; Siddique et al. 2019; 

Wang et al. 2022; Yu, Long, and Cai 2017; Zhang, Yu, and Li 2018)have recently explored Autoencoders 

and reported impressive performance. 

Autoencoders, as a deep learning technique, consist of three main components: the input, which 

comprises the dataset; the encoder, which transforms high-dimensional data into a lower-dimensional 

space; and the decoder, which converts the lower-dimensional space back to the output. The output is 

exists. Figure 1 illustrates a standard autoencoder with two hidden layers. 

 

  

   

 

 

 

 

 

 

Figure 1: Autoencoder Architecture 

Figure 1 illustrates that, when given an input of size X which is compressed into a lower dimension 

of size H2 (where X > H2), the bottleneck is then converted to Y, which is approximately the size 

of X. In anomaly detection systems like IDS, the autoencoder is typically fed with normal data, and 

a threshold value is established. Subsequently, when the model is fed input containing both attacks 

and normal data, any deviation from the threshold value is considered an abnormality or an attack. 

This property makes autoencoders suitable for detecting zero-day attacks. However, the full 

potential of autoencoders is not fully realized due to the lack of a generally accepted standard 

architecture for the latent space or bottleneck, resulting in lower detection accuracy. 

(Y. Song, Hyun, and Cheong 2021) conducted a study aimed at analyzing the impact of the 

dimension of the latent space on the model's performance. However, their study did not identify the 

optimal latent size that would lead to higher model performance. This absence of a suggested 

optimal latent size often results in a trial-and-error approach, which is time-consuming and delays 

the practical implementation of deep autoencoders. 

The contributions of this study include: 

1. Designing and implementing various latent space sizes for a two-hidden-layer autoencoder. 

2. Suggesting an optimal latent space size to expedite the practical implementation of 

autoencoders for IDS. 

(X) H1 

H2 

H3 (Y) 

Decoder Encoder 
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The rest of this work is divided into four main sections. Section 2 reviews related literature. Section 

3 outlines the methodology used to implement the proposed system. Section 4 covers the results 

and discussion. The final section presents the conclusion. 

2.0 Literature Review 

(Mirsky et al. 2018) conducted a study introducing Kitsune, a neural network-based Network 

Intrusion Detection System (NIDS) designed for efficiency and plug-and-play deployment. Kitsune 

achieves this through efficient tracking of network behavior across channels and utilizes an 

ensemble of autoencoders known as KitNET for anomaly detection. The study focuses on the online 

machine learning process of the framework and evaluates its performance in terms of detection 

accuracy and runtime efficiency. 

The authors highlight that KitNET, an online algorithm, exhibits competitive performance 

comparable to batch or offline algorithms and, in some cases, outperforms them. Notably, the 

algorithm's efficiency is demonstrated by its ability to operate on a single core of a Raspberry Pi 

device, with potential for even stronger CPUs. 

(T. Song et al. 2019)presented a study that introduces the LSE-VAE (Latent Space Encoding 

Variational Autoencoder) model as an innovative approach to sentence generation. By incorporating 

distinct prior latent distributions tailored to different sentences and structuring the latent space based 

on sentence similarity, the model effectively captures a substantial and informative latent 

representation. The research evaluates the LSE-VAE's performance through a combination of 

automated metrics and empirical analysis. 

In comparison to the conventional Variational Autoencoder (VAE), the LSE-VAE exhibits superior 

reconstruction capabilities, generating sentences of higher quality and greater diversity. Notably, 

the latent space learned by the LSE-VAE maintains the desirable attributes of continuity and 

smoothness observed in VAE-based latent spaces while further excelling at distinguishing sentences 

with varying degrees of similarity. An intriguing aspect of the LSE-VAE model is its enhanced ease 

of training, requiring fewer complex engineering strategies such as KL cost annealing. The 

determination of hyperparameters is streamlined through analytical derivation, taking into account 

factors such as latent variable dimensions and modeling requirements. This analytical approach 

contributes to the model's practicality and ease of implementation. 

In connection to the previous literature review, where Kitsune was introduced as a neural network-

based NIDS, both studies contribute to advancing their respective fields through innovative 

modeling approaches. Just as Kitsune enhances intrusion detection through efficient autoencoder 

ensembles, the LSE-VAE model elevates sentence generation with a specialized latent space 

arrangement. The intersection of neural network methodologies across diverse domains underscores 

the versatility and impact of deep learning techniques in addressing complex challenges. 

(Sindian and Sindian 2020)  also presented a study introducing a novel approach called the Deep 

Sparse Autoencoder-based Approach with two hidden layers (EDSA) for feature extraction and 

DDoS attack detection. The core objective of this research is to leverage autoencoders to extract 

representative features from the CICDDoS2019 dataset, subsequently minimizing classification 

errors and enhancing the accuracy of DDoS attack detection. 

The empirical analysis conducted on the proposed EDSA technique demonstrates its remarkable 

performance in terms of detection accuracy. A significant improvement is observed when compared 

to other network models across various performance indicators, including accuracy, detection rate, 

precision, and specificity. Notably, the false positive rate is considerably reduced, underscoring the 

effectiveness of the EDSA method. For the CICDDoS2019 dataset, the proposed technique achieves 

an impressive 98 percent detection accuracy and a minimal 1.4 percent false positive rate. Their 
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study's findings suggest the potential for further enhancements and exploration. The authors 

propose the incorporation of recent computer algorithms like K-means clustering, potentially 

introducing additional layers within the Sparse Autoencoder (SAE) structure to further reduce 

feature dimensions. Furthermore, the study envisions the application of alternative classification 

algorithms beyond the scope of the current research. 

In (Sindian and Sindian 2020), a study is proposed autoencoders as a powerful tool for capturing 

underlying factors in various types of datasets. Autoencoders' latent representations have been 

extensively studied in the context of facilitating interpolation between data points by decoding 

convex combinations of latent vectors. However, this interpolation process often results in artifacts 

or unrealistic outcomes during the reconstruction phase. The authors contend that these 

discrepancies arise from the structure of the latent space and the inherent deviation of naively 

interpolated latent vectors from the actual data manifold. 

In response to these challenges, the paper introduces an innovative regularization technique aimed 

at reshaping the latent representation. This regularization strategy strives to align the latent manifold 

with the training images, ensuring consistency and fidelity. Moreover, the technique promotes 

smoothness and local convexity within the manifold, addressing the issues associated with 

interpolation artifacts and unrealistic outcomes. 

The proposed regularization technique not only facilitates accurate interpolation between data 

points, as evidenced in the study, but also serves as a versatile approach to combat overfitting. 

Furthermore, it offers the potential to generate new samples for data augmentation, showcasing its 

broader applicability in enhancing dataset diversity and model generalization. 

This research contributes to the field of autoencoders by addressing a critical concern in latent space 

interpolation. By refining the latent manifold's structure, their study presents a robust solution that 

advances the quality and realism of interpolation results. Additionally, the regularization technique's 

versatility in preventing overfitting and generating augmented data underscores its practicality and 

significance in diverse machine learning applications. 

(Xu et al. 2021) introduced a study that presents a novel 5-layer autoencoder (AE)-based model 

designed to enhance the detection of anomalous network traffic. The development of this model is 

informed by a thorough and meticulous examination of key performance indicators and their impact 

on detection accuracy within an AE framework. Through a rigorous evaluation, the authors establish 

that the proposed 5-layer architecture, combined with an innovative data pre-processing 

methodology and specific loss metrics, yields optimal results in terms of accuracy and detection 

precision. 

Central to the success of the proposed model is the use of Mean Absolute Error (MAE) as the basis 

for the reconstruction loss function. The authors highlight how this choice of loss metric contributes 

to improved accuracy in network anomaly detection. 

The optimized 5-layer architecture, with carefully determined numbers of neurons in hidden and 

latent layers, outperforms alternative model architectures. The evaluation is conducted on the NSL-

KDD dataset, where the proposed model achieves impressive performance metrics, including 

accuracy, precision, recall, and F1-score. 

Their study acknowledges the adaptability of the model beyond the specific dataset used for 

training. While currently focused on NSL-KDD, the proposed model demonstrates an ability to 

recognize abnormal network traffic patterns effectively. Future plans include testing the model's 

generalizability across different intrusion attack samples and datasets from diverse applications, 

such as Android-based malware and medical annotations. The authors also express a commitment 
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to expanding their work to encompass multi-class classification and assessing the model's 

performance in real-world operational network environments. 

(Y. Song, Hyun, and Cheong 2021) explored the domain of intelligent Network Intrusion Detection 

Systems (NIDS) and their application of deep learning techniques to counteract the evolving 

landscape of network attacks. The focus is on leveraging autoencoders as a means to effectively 

identify new attack patterns and mitigate the challenges posed by the labor-intensive labeling of 

data. While autoencoders prove adept at detecting unknown attack types, the process of fine-tuning 

model architecture and hyperparameters to achieve optimal detection performance can be a 

resource-intensive endeavor, potentially hindering the practical implementation of autoencoder-

based NIDS. 

To address this challenge, the study takes a rigorous approach by investigating autoencoders using 

established benchmark datasets, including NSL-KDD, IoTID20, and N-BaIoT. The research 

systematically explores multiple combinations of model structures and latent sizes within a simple 

autoencoder framework. Through this thorough evaluation, the article sheds light on the critical role 

that the latent size of an autoencoder model plays in influencing the performance of an Intrusion 

Detection System (IDS). 

 (Xu et al. 2021)delves into the challenges posed by the emerging paradigm of the Internet of Things 

(IoT), which, while offering numerous benefits, is susceptible to cyberattacks due to its resource-

constrained and heterogeneous nature. Successful network intrusions in IoT networks can have far-

reaching consequences, compromising valuable consumer and industry information. To counteract 

these security challenges, the article introduces a novel approach: a lightweight deep autoencoder 

(DAE)-based cyberattack detection framework. 

The efficacy of the proposed framework is substantiated through evaluation using two standard and 

open-source datasets: NSL-KDD and UNSW-NB15. In both binary class and multi-class scenarios, 

the proposed DAE achieves impressive accuracies, attaining 98.86% and 98.26% for NSL-KDD, 

as well as 99.32% and 98.79% for the UNSW-NB15 dataset. 

To establish the robustness of the approach, the article compares the performance of the proposed 

attack detection framework with several state-of-the-art intrusion detection schemes. The 

experimental results underscore the promising nature of the proposed scheme in effectively 

detecting cyberattacks within IoT networks. 

The concept of latent space and architecture serves as a fundamental thread connecting the reviewed 

articles. Latent space refers to a compressed and abstract representation of data that captures 

underlying patterns and features. Architecture, on the other hand, refers to the design and structure 

of neural networks used to model and manipulate data. 

Both (Y. Song, Hyun, and Cheong 2021; Xu et al. 2021) underscore the importance of optimizing 

neural network architectures to achieve desired outcomes. (Y. Song, Hyun, and Cheong 2021)focus 

on autoencoder-based NIDS, emphasizing the need for careful architecture design to achieve 

optimal intrusion detection performance. Similarly, (Xu et al. 2021) meticulously explore various 

architectural configurations to develop an effective model for detecting anomalous network traffic. 

In both cases, the architecture's structure and design choices influence the characteristics of the 

latent space, which, in turn, impacts the model's performance. 

In summary, latent space and architecture are central concepts that interplay across the reviewed 

articles. Whether in the context of anomaly detection, sentence generation, model optimization, or 

regularization, the design choices made in constructing neural network architectures directly impact 

the nature and quality of the latent space representation, ultimately influencing the effectiveness 

and performance of the models in their respective domains. 



Scientific and Practical Cyber Security Journal (SPCSJ) 7(4): 36 – 51 ISSN 2587-4667 Scientific 

Cyber Security Association (SCSA) 

 

41 
 

The perspectives of these authors suggest that much more attention needs to be paid to the issue of 

latent space to achieve optimal performance of IDS. In view of this, the next section of this study 

will clearly outline the processes, procedures, and tools necessary to implement a study aimed at 

obtaining an optimal latent space that will consistently guarantee impressive performance of an 

autoencoder. These findings will help improve the detection accuracy of current and existing IDS. 

3.0 Methodology 

3. 1 Autoencoder 

The model designed for this study is the autoencoder for Network Intrusion Detection. The 

autoencoder is a deep learning algorithm that takes input data (X) and compresses it to a lower 

dimension known as the bottleneck (B) in a process known as encoding. The bottleneck is then used 

to reconstruct the output (Y) in a process known as decoding. 

 

        

 

 

 

 

 

 

 

Figure 2: Autoencoder model 

X: Input (input features) 

Y: Reconstructed output data 

h2: bottleneck 

f:  activation function for the encoder 

g: activation function for the decoder 

The autoencoder goal is to learn a mapping X to Y such that the reconstructed output Y is as close 

as possible to the input data X.  The architecture consists of an encoder and a decoder 

i. Encoder 

 The encoder function takes the input X and maps it to hidden representation h2 via two hidden 

layers: 

h1 = f (W1.X+b1) …………………………………………………………………………... (1) 

h2 = f (W2.X+b2) …………………………………………………………………………… (2) 

Where: 

 W1 represent the weight of the first hidden layer 

h1 Bottleneck (h2) h3 
Input (X) Output(Y) 

Decoder Encoder 
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b1 represent the bias of the first hidden layer 

W2 represent the weight of the Second hidden layer 

B2 represent the weight of the second hidden layer 

The decoder function maps the bottleneck h2 to the reconstructed output Y 

Via two hidden layers: 

H3 = f (W2.h2 +b2) ………………………………………………………………………..... (3) 

Y = g (W2. h3 + b2) ………………………………………………………………………......(4) 

Where: 

W2: Weights of the first hidden layer of the decoder 

B2: bias of the first hidden layer of the decoder 

W2: Weights of the second hidden layer of the decoder 

B2: bias of the second hidden layer of the decoder 

Loss Function 

This study made use of the mean square error (MSE to measure the difference between the input X 

and the reconstructed output Y and this is represented mathematically as  

MSE (X, Y) = 
1

𝑛
∑ (𝑛

𝑖=1 Xi-Yi) ………………………………………………………………… (5) 

3.1: Our propose System 

The primary objective of this study is to investigate how the architecture of an autoencoder influences 

the performance of an Intrusion Detection System (IDS). Specifically, the study focuses on determining 

the optimal bottleneck size that leads to improved IDS accuracy. The study employs a two-hidden-layer 

autoencoder for its investigation. The research plan involves conducting two experimental setups to 

achieve this goal. 

In the first experimental setup, a constant number of 50 neurons is maintained in the first hidden layer, 

while the last hidden layer (bottleneck) is varied. The values considered for the bottleneck size include 

40, 30, 20, and 10. The outcomes of this setup will provide insights into the impact of varying bottleneck 

sizes on IDS accuracy and guide the subsequent steps in the investigation. 

It is worth noting that this study introduces a unique approach distinct from prior research on the same 

topic. Previous studies have explored whether the bottleneck size influences model performance but 

have not delved deeper to ascertain the optimal bottleneck size for achieving superior model 

performance. For instance, a study by Song, Hyun, and Cheong (2021) conducted a similar investigation 

but primarily focused on assessing the effect of the bottleneck size on model performance. 

In summary, this study aims to contribute to the existing body of knowledge by not only examining the 

influence of bottleneck size on IDS model performance but also determining the precise bottleneck size 

that leads to optimal performance. This refined approach will provide valuable insights into designing 

more effective autoencoder architectures for intrusion detection. 
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Figure 3: Preliminary setup to obtain optimal bottleneck value 

In the Figure 3 above, the detection accuracy is recorded for each value in the array, and the value 

that yields the highest accuracy is chosen. This selected value is subsequently utilized as a seed 

value to conduct the next experimental setup, aiming to determine the suggested optimal bottleneck 

value for a two-hidden-layer autoencoder designed for Network Intrusion Detection. The next setup 

involves obtaining three values, represented as X ± 5, as illustrated in the Figure below. 

 

 

 

     

 

 

  

                                                                   

Figure 4:  Setup to obtain optimal bottleneck value 

                                              

The first component for our proposed system is the dataset. These datasets are used for training and 

testing the proposed system. The datasets include the CIC-IDS2017, and NSL-KDD. The sections 

below take a detail look at each of them. 

3.3 Datasets 

3.3.1 NSL-KDD dataset 

The NSL-KDD dataset is a well-known IDS dataset that is extensively employed by numerous 

researchers to validate their models. Its frequent utilization simplifies the process of comparing research 

outcomes with those of prior studies. According to (Tavallaee et al., 2009), NSL-KDD was developed 

to address the inherent issues associated with the KDDCup99 dataset. NSL-KDD remains relevant in 

contemporary research due to its capacity to yield consistent results, facilitating effective comparisons 

with other studies. This advantage stems from the dataset's balanced distribution of training and testing 

records, allowing for the entire dataset to be used without necessitating the selection of a randomly 

chosen subset. NSL-KDD encompasses four attack classes and a normal class. The instance counts per 

Dataset 

Bottleneck loop 

through the array of 

value:10,20,30,40 

Dataset 

Bottleneck loop through 

the array of value:X-5, X 

and X+5 
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class are presented in Table 1, while Table 2 provides an overview of the attack types and categories 

present within the NSL-KDD dataset. 

Table 1:Classes and number of instances in NSL-KDD dataset 

S/N CLASS NO OF INSTANCE 

1 R2L 52(0.04%) 

2 U2R 995(0.78%) 

3 probe 11656(9.25%) 

4 DoS 45927(36.47%) 

5 Normal 67343(53.46%) 

Table 2: Types and categories of attacks in NSL-KDD dataset 

TYPE OF ATTACK CATEGORIES OF ATTACK 

Probe N map, Portsweep, Satan, saint(6), Mscan 

DoS Worm (10), Back, Land Neptune, Process table, Udpstorm,Pod, Teardrop, 

Smurf, Apache 2. 

U2R Load Module,Perl, Sql attack, Buffer_overflow, Rotkit,Xterm ,Ps(7) 

R2L Spy, Xlock,Guess_Password, Ftp_write, Httptunnnel, Named(16), Pht, 

Multihop, Ftp_write, Send fmail, Name(16), Xsnoop, Waremaster, Snmp 

guesss, Snmp getattack 

 

3.4 Data preprocessing 

3.4.1 One hot encoding 

The proposed systems AE-LSTM cannot directly process NSL-KDD, dataset in its original form. The 

one-hot- encoding is used to transform the non-numeric features into numeric feature for the AE to 

process it. NSL-KDD dataset has 38 numeric features and   three non-numeric features. The nonnumeric 

feature such “protocol-type”, “flag” and “service” need to be converted into numeric format. 

i. The first non-numeric feature to be converted into numeric feature is the protocol-type. The 

protocol type has three main attributes namely the ‘TCP’,’UDP’ and ‘ICMP’ which are 

encoded as follows as shown in Table 3. 

Table 3: converting non-numeric features to numeric features 

Protocol-type TCP UDP ICMP 

encoded 1,0,0 0,1,0 0,0,1 

 

Next, the “flag” and “service features” are converted into numeric features. The service feature has 

seventy (70) different attributes and so by using the same method in the step (i) above each attribute of 

service feature is mapped to 70 distinct binary attributes. Similarly, the flag feature also has 11 different 

attributes and is also converted into numeric features by mapping it to 11 distinct binary attributes.  As 

result of this transformation, the 41 features of NSL-KDD dataset are transformed into 112 distinct 

features. 
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3.4.2 Normalization 

The datasets are first normalized to enhance the performance and reliability of our model by converting 

all numeric columns to a common scale. The equation three (3) below shows how the min-max 

technique is used to perform the normalization task.  

  y = x-min/max-min……………………………………………………………….…(6) 

Were 

y = new value of each entry 

Min = minimum value for each data points 

Max = maximum value for each data points 

A similar process is also used to prepare the CIC-IDS2017 dataset for the autoencoder learning 

algorithm. 

3.4.5 Data Splitting 

 The data that has been transformed is then split into the ratio 75:25 for training and testing 

respectively. 

 3. 5 Metrics of evaluation 

Intrusion detection systems performance is evaluated based on a number of metrics including the 

accuracy, precision, F1-score and Recall. The others are: 

True positive: correctly classified attacks in a data sample 

True Negative: Normal traffic in a data sample that has been correctly classified as Normal 

False positive: Normal traffic in data sample wrongly classified as an attack 

False negative: Malicious traffic in a data sample that has been wrongly classified as Normal 

The metrics are calculated as follows: 

Accuracy measures: the total number of data samples correctly classified as true positive or true 

negative. Higher accuracy for the balanced dataset is an indication of good performance. The Equation 

7 below shows how accuracy is calculated. 

Accuracy (ACC) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ………………………………………………… (7) 

Recall which is also called true positive rate is the proportion of correctly predicted positive instances 

of a class to the overall instance of the same class.  A higher recall rate that ranges from 0 to 1 indicates 

a better model performance. The Equation 8 below shows how the Recall is calculated 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ……………………………………………………………………… (8) 

Precision is the ratio of positive instances that are correctly predicted to the ratio of all predicted samples 

for a class. Recall and Precision are always paired when evaluating model performance. The Equation 

9 below shows how the precision is calculated 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …………………………………………………………………… (9) 
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F1-score is computed by taking the harmonic mean of precision and recall. F1-score normally calculates 

the tradeoff between precision and recall. F1-score is calculated as shown in equation 8 below 

F1-score =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
……………………………………………………… (10) 

3.6 Experimental setup 

The experimental results were obtained using the following specifications to construct the model in 

Python on the Google Colab platform, utilizing a CPU processor. The number of epochs was set to 100, 

and the batch size was set to 500. For the activation function, the ReLU activation was employed for 

both the encoding function and the hidden layers of the decoding function. Subsequently, the softmax 

function was utilized as the output function. 

The experimental setups were executed with a two-hidden-layer architecture, where the first layer was 

kept at a constant size of 50 units. In each setup, the latent space was varied using array elements 10, 

20, 30, and 40, maintaining the ratio 50:10, 50:20, 50:30, and 50:40, respectively. A distinct model was 

built for each configuration, and the corresponding results were recorded. Notably, to ensure consistent 

results, each setup was executed only once, thereby preventing interference from previous runs. 

The primary objective of these experiments was to determine the optimal latent space size that leads to 

the highest accuracy for intrusion detection. This optimal latent space size, denoted as X, was identified. 

To further refine the architecture, latent space sizes of X-5, X, and X+5 were generated. These new 

configurations were then explored to derive the most optimal bottleneck size, aiming to enhance the 

performance of the intrusion detection system using a deep autoencoder. 

This investigation targeted two benchmark datasets, namely NSL_KDD and CIC-IDS2017. By varying 

the latent space size and analyzing the resulting accuracy, the goal was to pinpoint the most suitable 

position within the array of elements. This "best" latent space size, represented by X, served as a 

foundation for subsequent analyses to fine-tune the architecture for improved intrusion detection 

capabilities. 

4.0 Results and discussion 

4.1 Preliminary Results and Latent Space Correlation: 

The preliminary experimental results (Table 4 and Table 5) provide an initial glimpse into the impact of 

different latent space sizes on intrusion detection system performance. Notably, latent space size 30 

consistently emerges as a high-performing configuration across both the NSL-KDD and CID-IDS2017 

datasets. This observation is intriguing, as it aligns with the previously proposed hypothesis: the optimal 

latent space size should be around 60% of the preceding hidden layer's size. This alignment hints at the 

potential validity of this latent space correlation. Figure 5 and Figure 6 below show the pictorial view 

of the results from the preliminary study. 

 Table 4: Result of Preliminary experimental for NSL-KDD dataset 

Model Accuracy TPR FPR Precision Recall F1-Score 

50,10,50 84.86% 76.0% 0.065 92.12% 85.13% 88.48% 

50,20,50 86.74% 85.2% 0.070 92.20% 87.22% 89.64% 

50,30,50 91.75% 88.0% 0.073 92.55% 97.97.75% 95.55% 

50,40,50 75.32% 60.7% 0.060 91.39% 81.00% 85.88% 

 

Table 5: Result of Preliminary experimental for CID-IDS2017 dataset 

Model Accuracy TPR FPR Precision Recall F1-Score 
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50,10,50 90.77 % 89.00% 0.065 92.5714% 93.13% 0.928499 

50,20,50 92.88% 93.50% 0.070 93.0348% 96.22% 0.946006 

50,30,50 95.98% 98.97% 0.068 93.5710% 98.85% 0.964679 

50,35,50 83.10% 87.02 0.060 92.5267% 88.00% 0.902066 

 

      Figure 5: Bottlenecks vr metrics of evaluation for NSL-KDD dataset in preliminary study 

 

Figure 6: Bottlenecks vr metrics of evaluation for CIC-IDS2017 dataset in preliminary study 

 4.2 Final results for NSL-KDD Dataset  

In the context of the NSL-KDD dataset, the results reveal intriguing trends. Latent space size 30 emerges 

as a configuration that consistently maintains high accuracy, TPR, and F1-score values. The latent space 

correlation's manifestation in the final results bolsters its validity and utility in architecting effective 

intrusion detection systems. The Figure 7 below show clearly the various model 

configurations(bottlenecks) and their performance for our final study using NSL-KDD dataset. 

 

Table 6: Results for final Experimental study using NSL-KDD dataset 

Model Accuracy TPR FPR Precision Recall F1-Score 

50,25,50 88.02% 77.00% 0.067 91.9952% 94.34% 90.0352% 

50,30,50 91.75% 88.00% 0.073 92.3400% 97.97% 95.55% 
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50,35,50 89.66% 76.00% 0.073 91.2365% 95.99% 91.2533 

 

           Figure 7: Bottlenecks vr metrics of evaluation for NSL-KDD dataset in Final study 

4.3 Final results for CIC-IDS2017 Dataset  

The findings from the CIC-IDS2017 dataset further substantiate the significance of the latent space 

correlation. Latent space size 30 continues to exhibit exceptional performance, reflecting its potential 

as a universal configuration guideline. The high TPR and F1-score values validate its effectiveness in 

detecting true anomalies while maintaining a balance against false positives. Figure below provides the 

pictorial representation for the various bottlenecks’ performances for our final study using CIC-

IDS2017. 

Table 7: Results for final Experimental study using CIC-IDS2017 dataset 

Model Accuracy TPR FPR Precision Recall F1-Score 

50,25,50 93.50% 0.92.66 0.087 0.920245 95.01% 0.934934 

50,30,50 95.98% 0.9897 0.068 0.93571 98.85% 0.961381 

50,35,50 94.12% 0.9426 0.091 0.917623 96.75% 0.941902 

 

 

Figure 8: Bottlenecks vr metrics of evaluation for CIC-IDS2017 dataset in final study 



Scientific and Practical Cyber Security Journal (SPCSJ) 7(4): 36 – 51 ISSN 2587-4667 Scientific 

Cyber Security Association (SCSA) 

 

49 
 

4.4 Discussion  

4.4.1 Impact on Intrusion Detection Systems: 

The consistent success of latent space size 30 in both datasets underscores its effectiveness in boosting 

the performance of intrusion detection systems. This result holds practical implications for system 

architects and cybersecurity practitioners. It provides them with a concrete benchmark to guide 

architecture design, ensuring enhanced accuracy and precision in detecting intrusions. 

The latent space correlation, where the optimal latent space size is approximately 60% of the preceding 

hidden layer's size, serves as a pivotal takeaway from this research. This empirical observation bridges 

the gap between theoretical understanding and practical application, offering a valuable heuristic for 

system designers aiming to optimize autoencoder-based intrusion detection systems. 

The study's significance lies in its embodiment of the synergy between AI and security. By rigorously 

testing and validating latent space configurations, this research demonstrates how AI techniques can be 

harnessed to address pressing security challenges. The results showcase how AI-driven insights 

translate into actionable strategies for enhancing cybersecurity measures. 

While this study illuminates the latent space correlation's potential, future research could explore its 

applicability to a broader range of datasets and intrusion scenarios. Additionally, investigating more 

intricate autoencoder architectures and considering other neural network techniques could uncover 

further optimization opportunities and contribute to the evolution of intrusion detection systems. 

Armed with the findings, practitioners can confidently implement autoencoder architectures with latent 

space sizes around 60% of the preceding hidden layer's size. This practical application of research 

contributes directly to improving the robustness and efficiency of intrusion detection systems in real-

world scenarios. 

 5.0 Conclusion 

Finally, the constant success with a latent space size of 30 found in both datasets highlights its 

effectiveness in improving intrusion detection system performance, offering system architects and 

cybersecurity practitioners a concrete benchmark. The optimal size of the identified latent space 

correlation is about 60% of the size of the previous hidden layer. This is an important finding that 

connects the theoretical and practical domains and provides a useful heuristic for system designers who 

want to optimize autoencoder-based intrusion detection systems. The study shows how AI techniques, 

through thorough testing and validation of latent space configurations, may address urgent security 

concerns and convert into beneficial outcomes. It also represents the successful synergy between AI and 

security. practical methods for strengthening cybersecurity defenses. While shedding light on the latent 

space correlation's potential, further research opportunities include investigating how well it applies to 

various datasets and intrusion scenarios, investigating more complex autoencoder architectures, and 

taking into account alternative neural network techniques to find even more optimization opportunities 

for the development of intrusion detection systems. Equipped with these discoveries, professionals can 

safely execute autoencoder structures with latent spaces around 60% larger than the previous hidden 

layer's size, so directly enhancing the resilience and effectiveness of intrusion detection systems in 

practical scenarios. 
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Data Availability:  

The dataset NSL-KDD is publicly available on: https://www.unb.ca/cic/datasets/nsl.html 

https://www.unb.ca/cic/datasets/nsl.html
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The dataset CIC-IDS2017 is publicly available on: https://www.unb.ca/cic/datasets/ids-2017.html 
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