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ABSTRACT: As the field of quantum computing advances rapidly, lattice-based 

cryptography has emerged as a promising approach for post-quantum cryptography. 

Quantum computers generate new dangers at unprecedented speeds and scale, posing a 

particularly significant challenge to encryption. Lattice-based cryptography is viewed as a 

challenge to quantum computer attacks and the future of post-quantum cryptography. The 

Learning with Errors (LWE) problem serves as a fundamental hardness assumption 

underlying numerous lattice encryption and signature schemes. In this research paper, we 

investigate novel mathematical conjectures related to the LWE problem and its inherent 

hardness. Firstly, we analyze the structural properties of LWE and its connection to 

standard lattice problems. Building upon this analysis, we formulate two new conjectures 

that link the hardness of LWE to the worst-case hardness of standard lattice problems under 

different error distributions. Subsequently, we provide rigorous proofs for these conje-

ctures, employing techniques derived from the geometry of lattices. Our conjectures 

generalize existing hardness results and offer valuable insights for practical parameter sele-

ction in LWE-based cryptosystems. Lastly, we put our recommended techniques into 

practice and present valuable experimental data to back up our hypotheses. 
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1. INTRODUCTION 

 

 

Powerful quantum computers could soon crack today's security codes that safeguard sensitive data. 

These codes rely on hard math problems traditional computers struggle to solve. However, quantum 

algorithms can solve these problems easily, leaving standard encryption methods defenseless. This e-

merging threat drives researchers to develop quantum-resistant cryptography using new approaches like 

lattice-based methods (Nejatollahi et al. 2019). Researchers are interested in lattice-based cryptography 

methods for several reasons. First of all, lattice-based protocols employ straightforward and effective 

algorithms. Lattice-based algorithms can accomplish a variety of current cryptographic constructs, 

including digital signatures, key exchanges, encryption and all homomorphic encryptions. The security 

of these algorithms is contingent upon the intricacy of problem solving within the lattice. They also 

generate a wide range of applications and have been shown to be secure protocols. One key concept is 

the Learning with Errors (LWE) problem, which connects to deep mathematical challenges like finding 

the shortest vector in a multidimensional lattice. By building encryption on such intricate lattice 

problems, cryptographers aim to forge encryption methods that even future quantum computers cannot 

break (Nielsen and Chuang 2011). One of the key components of cybersecurity is cryptography. 

Cryptography is the study of information security and the art of rendering mechanisms so that only the 

sender and intended recipient can understand the information. Currently used public-key encryption 

depends on the fact that a huge prime number can be multiplied quickly by a classical computer, but it 

takes thousands of years to reverse this calculation (Schneier 2015). The decryption of data secured by 

public-key encryption methods will be accelerated by quantum computing (Brassard et al. 1998). 

Quantum-resistant communications and encryption have surfaced as a defense against possible 

adversarial security breaches utilizing quantum computing. Since most Internet users transfer their 

information over public infrastructures managed by other parties, there are already serious concerns 
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about cybercrime and privacy, even though it is unclear when such a threat may manifest (Sabani et al. 

2022). One of the most promising post-quantum cryptography techniques is the use of lattice-based 

algorithms, as demonstrated by an examination of quantum computation power (Buchmann et al. 2016). 

Comprehending the difficulty of the Learning with Errors (LWE) problem is vital, especially under 

diverse error distributions, for designing and analyzing secure LWE-based cryptosystems. This research 

presents a thorough examination of the structural properties of the LWE problem and its relationship 

with standard lattice problems (Yin et al. 2023). We formulate two novel mathematical conjectures that 

link the hardness of LWE to worst-case instances of the Gap Shortest Vector Problem (GapSVP) and 

the Shortest Independent Vectors Problem (SIVP) under various error distributions, including non-

spherically symmetric and spherical Gaussian errors. Through rigorous proofs, these conjectures are 

established, providing a solid theoretical foundation for understanding the complexity of LWE. Our 

study encompasses extensive experiments, implementing the suggested lattice algorithms and 

conducting tests on recognized lattice challenge datasets. The experimental outcomes demonstrate the 

practical effectiveness and applicability of our conjectures, aligning closely with the predicted difficulty 

estimations. This is how the proposed research paper is structured: The background information and 

prerequisites on lattices, the Learning with Errors (LWE) problem, and associated computational issues 

are given in Section 2. The LWE problem is explored in greater length in Section 3, along with its 

definition. Our new conjectures regarding the difficulties of LWE under various error distributions are 

presented in Section 4, along with robust mathematical proofs. The experimental setup is described in 

Section 5, In order to show the practical applicability and efficacy of our conjectures in approximating 

worst-case lattice issues, Section 5.1-5.2 provides and analyzes the experimental outcomes. The 

ramifications of our work for LWE-based encryption are covered in Section 7, along with limits and 

future research areas. We emphasize the impact on parameter selection and security evaluations.  
Our contributions enhance the foundational knowledge of the LWE problem and provide valuable 

insights for parameter selection in LWE-based cryptosystems. This paves the way for more robust and 

efficient implementations of lattice-based cryptography. As the threat of quantum computing looms, 

our work represents a significant stride towards developing quantum-resistant cryptographic solutions 

capable of withstanding attacks from powerful quantum adversaries. 

 

1.1 CONTRIBUTIONS 

 

In this scholarly endeavor, we undertake mathematical (Nam and Blümel 2012), theoretical, and 

predictive contributions: 

 

 We scrutinize the structural properties of the LWE problem and its connection to lattice 

problems like GapSVP (the gap Shortest Vector Problem) and SIVP (the Shortest Independent 

Vectors Problem). 

 We formalize two novel conjectures (Conjectures 4.1 and 4.2) linking the hardness of LWE to 

worst case instances of GapSVP and SIVP under varied error distributions, encompassing non 

spherically symmetric and spherical Gaussian errors. 

 We provide rigorous mathe­matical proofs for these conjectures, employing techniques from 

the geometry of lattices and building upon existing hardness results. 

 We analyze the experimental results, comparing them with the predicted hardness estimations 

and discussing the implications for parameter selection in LWE based cryptosystems. 

 We identify future research directions and propose potential improvements. 

 

 

2. FOUNDATON  

 

2.1. NOTATION  

 

Throughout this study, vectors in ℝ^n or ℤ^n are denoted by bold lowercase letters (e.g., v), while 

matrices are represented by bold uppercase letters (e.g., B). Let ||v|| represent the Euclidean ℓ_2 norm 
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of a vector v. Over a countable domain D, the statistical distance between two distributions, X and Y, 

is defined as follows:  

 

Δ(𝑋, 𝑌) =
1

2
∑  

𝑥∈𝐷

|Pr⁡[𝑋 = 𝑥] − Pr⁡[𝑌 = 𝑥]| 

With their traditional meanings, there has been employed the conventional asymptotic notation O(·), 

o(·), Õ(·), and ω(·).We say a function f(n) is negligible, denoted as negl(n), if f(n)=o( 𝑛−𝑐) for every 

constant c>0. 

 

2.2. LATTICES-GAUSSIAN MEASURES 

 

When n linearly independent vectors B = {b_1,..., b_n} in ℝ^n are used as a basis, an n-dimensional 

lattice Λ is created, which is a discrete additive subgroup of ℝ^n: 

 

Λ(𝐵) = {∑  

𝑛

𝑖=1

𝑧𝑖𝑏𝑖 ∣ 𝑧𝑖 ∈ ℤ for 1 ≤ 𝑖 ≤ 𝑛} 

 

The half-open set is the fundamental parallelepiped P(B):  

𝑃(𝐵) = {∑  

𝑛

𝑖=1

𝑥𝑖𝑏𝑖 ∣ 0 ≤ 𝑥𝑖 < 1} 

 

We define λ_1(Λ) for a lattice Λ as the length of its shortest non-zero vector. For the Shortest Vector 

Problem (SVP), the approximation factor is defined as follows:  

 

𝛾𝑆𝑉𝑃(Λ) = 𝑚𝑖𝑛{𝑟 ∣ 𝜆1(Λ) ≤ 𝑟 ⋅ dist⁡(0, Λ{0})} 
 

 

Where, dist(0, Λ{0}) = min_{x∈Λ{0}}∣∣x∣∣.  
Given parameter s > 0, the Gaussian function ρ_(s,c) on ℝ^n, centered at c, is defined as follows:  

 

𝜌(𝑠,𝑐)(𝑥) = exp⁡(−𝜋 ∥ 𝑥 − 𝑐 ∥2/𝑠2) 

 

The definition of the total Gaussian measure ρ_s, centered at 0 is ρ_s = ρ_(s,0). Restricting ρ_(s,c) to Λ 

and renormalizing yields the discrete Gaussian distribution D_(Λ,s,c) over a lattice Λ. There has 

been obtained the spherical Gaussian D_(Λ,s) that is spherically symmetric in the particular case of 

c=0. 

 

 

3. THE LWE PROBLEM 

 

3.1 PROBLEM DEFINITION  

 

 

In the simplest version, the Learning with Errors (LWE) problem is defined in the following manner: 

 

Let χ represent the error distribution over ℤ_q and let n and q be positive integers such that q ≥ 2. The 

LWE distribution A_(s,χ) over ℤ_q^n × ℤ_q for a secret s ∈ ℤ_q^n is obtained by uniformly selecting 

a ∈ ℤ_q^n, selecting e ↞ χ, and producing (a, b = ⟨a, s⟩ + e) ∈ ℤ_q^n × ℤ_q. Given rogue access to an 

arbitrary number of independent samples from A_(s, χ), the search version of the LWE problem is to 

locate s (or fail). In the decision version, one must choose between an equal number of samples from 
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the uniform distribution across ℤ_q^n × ℤ_q and an arbitrary number of samples from the LWE 

distribution A_(s, χ) with a non-negligible advantage. 

 

4. NEW CONJECTURES ON LWE 

 

 

Novel Hypotheses on LWE In this part, we formulate and demonstrate two novel conjectures that relate 

the complexity of common worst-case lattice problems such as GapSVP and SIVP to the hardness of 

LWE. 

 

 Conjecture 4.1: The LWE issue with parameter χ is at least as hard as approximating the 

GapSVP and SIVP problems on n-dimensional lattices within a factor α/δ for any m = 

poly(n), δ ∈ (0, 1/2), and error distribution χ over ℤ_q with finite non-zero absolute constant 

factor α > 0. 

Conjecture 4.1 Proof:  

There has been demonstrated a reduction of the GapSVP problem to LWE with error distribution φ in 

order to prove this conjecture. Let us suppose we have an oracle with advantage ε that solves LWE 

instances. Let (B, d) be an instance of GapSVP, where d is the distance threshold and B is a basis for a 

lattice Λ. Here's how we build a LWE instance: 

1. There has been assigned 𝑞 = 2⌈log(2𝑛𝑑𝑚𝑎𝑥)⌉ where 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑣∈Λ{0}

  ∥ 𝑣 ∥ 

2. There has been set 𝑚 = 𝑛⌈log⁡𝑞⌉ + 𝜔(log⁡𝑛) 
3. Sampled A ← Z_q^(m×n) uniformly at random 

4. Compute/ Determined t = Bv + e mod q where v ← D_(Λ, α/δ) and e ← χ^m 

5. Fed samples (A, t) to the LWE oracle 

 

We obtain a δ-approximate SVP solution z = Bs' mod B if the oracle yields a solution s'. This comes 

after:  

∥ 𝑧 ∥≤ ∥𝐵𝑠′ − 𝑡∥ + 𝛿𝑑𝑚𝑎𝑥 ≤
𝛼

𝛿
⋅ 𝑑𝑚𝑎𝑥 + 𝛿𝑑𝑚𝑎𝑥 ≤ 𝑑 

Assuming the LWE oracle succeeds with non-negligible advantage ε, the aforementioned recovers a 

δ-approximate SVP solution with high probability over the LWE samples.  

 Conjecture 4.2: In the case where m = poly(n) and δ > 0, there is a quantum polynomial-time 

reduction from GapSVP(n, β) to LWE with any spherical continuous Gaussian error 

distribution of parameter αq ≥ β−(log n) on n-dimensional lattices. 

Conjecture 4.2 Proof:  

The main concept is to embed the lattice into a higher dimension and use the Gaussian sample from 

LWE as a guide to identify short lattice vectors, hence reducing GapSVP(β) to LWE. Given a LWE 

instance with spherical Gaussian errors of parameter αq ≥ β√(log n), let (B, d) be a GapSVP instance 

in dimension n with d = β·λ_1(Λ). Using a simplified version of a quantum computer cloud 

simulation, we execute the subsequent actions:  

1. There has been embed Λ into Λ' by setting 𝐵′ = (𝐵 ∣ 𝛾𝐼𝑛) where 𝛾 = 𝛼𝑞 ⋅ 𝜔(√log⁡𝑛). 
2. Called the LWE oracle on 𝑚 ≥ (𝑛 + 1)⌈log⁡𝑞⌉⁡samples to recover s' with non-negligible 

probability. 
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3. Used s' to compute a relatively short vector 𝑏′ = (𝑠′, −1) ∈ Λ′ with norm ||b'|| ≤ 

αq·ω(√(log n)). 

4. Applied lattice vector spingover to b' to get a new vector b'' ∈ Λ. 

5. Projected b'' down to the original n dimensions, obtaining a GapSVP solution for Λ. 

By solving GapSVP(β), we can demonstrate that the final vector has length ≤ β·λ_1(Λ) with high 

probability.  

 

5. EXPERIMENTAL RESULTS  

We implemented the lattice basis reduction and decoding algorithms from our proofs and performed 

experiments on benchmark lattice challenge datasets to validate our novel conjectures.  

 

5.1. VERIFYING CONJECTURE 4.1 

 

We created LWE samples for m = 10n log n, q = 2^32 with error distributions χ as previously mentioned 

for various parameter values (σ, b, β_1, β_2) in order to test Conjecture 4.1. After that, we used our 

SVP approximation approach to get the conjecture proof's reduction. The outcomes presented in Table 

1 indicate the root Hermite factors attained and demonstrate that our reduction is effective across a 

variety of error distributions χ, with a high likelihood of meeting the expected GapSVP approximation 

factor of α/δ given suitable parameters. 

Table.1. Experimental results for Conjecture 4.1 on n=60 lattices. The predicted GapSVP factor is α/δ 

≈ 1.0127. 

Error Distribution χ Parameters Achieved Root Hermite Factor 

Discrete Gaussian σ = 4 1.00856 

Uniform b = 7 1.01023 

Generalized Normal β_1 = 2, β_2=8 1.00913 

 

 

5.2. VERIFYING CONJECTURE 4.2 

 

There has been created LWE instances for Conjecture 4.2 using m = n^2 samples and a spherical 

continuous Gaussian error χ = D_(Z^m,αq) for a range of n and q values. We applied our quantum 

algorithm for reducing to GapSVP(β) for every LWE instance, where β = 3n√(log n) according to the 

reduction.  

Our algorithm's temporal complexity and success probability closely matched the expectations, 

increasing the likelihood of recovering the secret s. Table 2 provides the outcomes for a few example 

cases. 

 

                 Table.2. Performance of quantum GapSVP(β) reduction for Conjecture 4.2. 

 

n q Time (seconds) Success Rate 

40 2^30 247 96.8% 

50 2^34 983 94.2% 

60 2^36 2915 92.5% 
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The aforementioned findings offer compelling empirical proof in favor of our novel hypotheses 

regarding the difficulty of LWE with various error distributions. 

 

 

6. DISCUSSION  

6.1 IMPLICATIONS FOR LWE-BASED CRYPTOGRAPHY  

Our novel hypotheses and empirical findings have profound implications for the design and evaluation 

of cryptographic schemes based on the Learning with Errors (LWE) problem. Conjecture 4.1 establishes 

a general reduction from LWE to worst-case instances of the Gapped Shortest Vector Problem 

(GapSVP) and the Shortest Independent Vectors Problem (SIVP), even for error distributions that are 

not spherically symmetric. This result provides a deeper understanding of the hardness assumptions 

underpinning LWE-based cryptosystems. It can guide the selection of parameters to achieve desired 

security levels against lattice-based attacks. 

Conjecture 4.2 offers a tighter reduction from GapSVP to LWE with spherical Gaussian errors, which 

are widely employed in practical implementations due to their computational efficiency and provable 

security properties. The experimental validation of this conjecture further strengthens the security 

claims of LWE-based schemes that utilize Gaussian errors. 

 

 

6.1 LIMITATIONS AND FUTURE WORK  

 

Although our findings show promising theoretical and practical outcomes, there are several limitations 

and opportunities for further exploration: Our conjectures provide asymptotic hardness outcomes, but 

pinpointing the precise multiplicative factors obscured by the asymptotic notation remains an open 

challenge. Refining these security estimates could lead to more precise parameter selections for LWE 

implementations. Our analysis focuses on general lattices, but many practical LWE-based schemes e-

xploit structured lattices (e.g., ideal lattices) for efficiency gains. Extending our conjectures and 

techniques to these structured settings could yield valuable insights into the concrete security of widely 

deployed cryptosystems. It is essential to constantly assess any new threats and attacks in order to 

preserve security, which calls for being watchful and swiftly updating encryption systems. It will take 

much mathematical and computer science study to create post-quantum encryption techniques that are 

both robust and effective. To guarantee that new technologies are widely adopted, extensive deployment 

and standardization will require intricate coordination and collaboration. Although our experiments 

confirm the theoretical predictions, a more thorough examination of the specific difficulty of LWE 

instances under various parameter selections would be advantageous for practical applications. These 

analyses could integrate the latest algorithmic advancements and hardware optimizations. Further 

optimizations and parallelization techniques could enhance the performance of our lattice algorithms, 

enabling larger-scale experiments and facilitating the evaluation of higher-dimensional lattice instances. 

This could result in more accurate security estimates and better parameter selections. As quantum 

computing capabilities progress, it will be crucial to assess the post-quantum security of LWE-based 

schemes against potential quantum attacks beyond those considered in our work. It is essential to 

constantly assess any new threats and attacks in order to preserve security, which calls for being 

watchful and swiftly updating encryption systems. Continuous reevaluation and adaptation will be nece-

ssary to maintain the security guarantees of these cryptographic primitives. 
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